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A low-Reynolds-number, four-equation 
heat transfer model for turbulent 
separated and reattaching flows 
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Yusong -ku ,  Tae jon,  Sou th  Korea 

An algebraic heat f lux model is applied to predict turbulent heat transfer in separated and 
reattaching flows. Based on the prior low-Reynolds-number k -s  model of Park and Sung 
(1995), an improved version of the nonequi l ibr ium heat transfer model is developed. The 
model performance is examined by solving the equations of the temperature variance k 0 
and its dissipation rate ~0, together wi th  the equations of k and e. In the present model, the 
near-wal l  l imit ing behaviour close to the wal l  and the nonequi l ibr ium effect away from the 
wal l  are incorporated. A tensor eddy-diffusivity is obtained to implement the orientation of 
mean temperature gradient in separated and reattaching flows. The validation of the model 
is applied to the turbulent f low over a backward facing step. The predictions of the present 
model are cross-checked wi th  the existing measurements and direct numerical simulat ion 
(DNS) data. The model performance is shown to be generally satisfactory. © 1997 by 
Elsevier Science Inc, 

K e y w o r d s :  low-Reynolds-number heat transfer model; tubulent separated and reattaching 
f lows 

Introduction 

Comprehensive knowledge of flow structure is essential to ana- 
lyze the attendant heat transport phenomena. As a multipronged 
attack on the problem of turbulent flow and heat transfer pro- 
cesses in separated and reattaching flows, an improved version of 
the nonlinear low-Reynolds-number k - e  model has been devel- 
oped by Park and Sung (1995). In their model, the limiting 
near-wall behavior and nonlinear Reynolds stress representations 
were incorporated. The main emphasis was placed on the adop- 
tion of R y ( ~ k i / Z y / v )  instead of y+(---uTy/v)  in the low-Re- 
ynolds-number model to avoid the difficulties at the separation 
and reattachment points (u T = 0). The nonequilibrium effect was 
also taken into account to describe recirculating flows away from 
the wall. The model performance was shown to be generally 
satisfactory. Based on the aforementioned fluid flow model, 
efforts are now directed toward extending the model to thermal 
field computation. 

A literature survey reveals that most of the studies on heat 
transfer in separated and reattaching flows have contained mainly 
mean heat transfer rates and very little fluid dynamic data 
(Fletcher et al. 1974; Aung and Watkins 1978; Aung and 
Goldstein 1972). However, in order to understand the dynamic 
characteristics of turbulent heat transfer, turbulence quantities 
are more informative. Contrary to the aforementioned research, 
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studies on the combined heat transfer and fluid dynamic mea- 
surements in turbulent separated and reattaching flows are rela- 
tively scarce (Vogel and Eaton 1985). Combined heat transfer 
and fluid dynamic measurements downstream of a backward-fac- 
ing step have been made by Vogel and Eaton, in which the heat 
transfer data coupled with temperature and velocity profiles were 
provided to scrutinize the mechanisms of controlling the heat 
transfer rate in reattaching flows. 

In contrast to the preceding rare experiments, there have 
been many numerical thermal field computations in turbulent 
separated and reattaching flows (Ciofalo and Collins ] 989; Chieng 
and Launder 1980; Dutta and Acharya 1993; Arman and Rabas 
1994). Most computations cited in the literature are implemented 
by using the k - e  model. Conventionally, turbulent heat transfer 
is simulated by employing the turbulent Prandtl number Pr t, in 
which the eddy-diffusivity of heat cx t is prescribed through the 
known eddy-viscosity v t. This assumption; i.e., Prt-constant, satis- 
fies Pope's linear superposition principle of scalars in turbulent 
flows (Pope 1983). However, it is revealed that there are no 
universal values of Pr/ even in simple attaching flows (Reynolds 
1975; Antonia 1980). Furthermore, it is expected that the values 
in separated and reattaching flows differ substantially from those 
in an ordinary boundary layer. 

As pointed out by Rogers et al. (1989), simple gradient-trans- 
port-type models work well for predicting the scalar heat flux in 
homogeneous flows, where the simple model is represented as 
--bliO= o~tOT/Ox i. However, this model is inadequate to predict 
convective heat transfer in separated and reattaching flows. This 
is because the scalar heat fluxes are no longer aligned with the 
mean temperature gradiants. Additionally, the magnitude of the 
flux component down the gradient varies substantially, depending 
on the direction of the imposed mean temperature gradient. A 
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tensor eddy-diffusivity is obtained to implement the orientation 
of mean temperature gradient with respect to the mean tempera- 
ture. 

To analyze heat transfer problems numerically in separated 
and reattaching flows, an algebraic heat flux model (Rogers et al. 
1989; Gibson and Launder 1976) is employed in the present 
study. In the recirculation region, it is known that the effect of 
nonequilibrium away from the wall becomes dominant. This 
means that the production of turbulent energy Pk is not balanced 
with its dissipation e; i,e., P J e  =# 1. To address this point, the 
nonequilibrium effect of velocity field (P~/s)  as well as the 
thermal nonequilibrium effect (Po /%)  are incorporated in the 
present algebraic heat flux model. The eddy-diffusivity tensor is 
then obtained by solving the two equations of temperature vari- 
ance (k 0) and its dissipation rates (%), together with the equa- 
tions of k and e. Correct near-wall limiting behavior is a prereq- 
uisite to accurate prediction of convective heat transport in 
separated and reattaching flows. A wall damping function fx is 
adopted in the present algebraic heat flux model, where fx 
satisfies the wall limiting behavior. 

Turbulence model for velocity field 

To evaluate the turbulent heat transfer in separated and reat- 
taching flows accurately, the prediction of flow fields with suffi- 
cient accuracy should come first. As mentioned in the introduc- 
tion, an improved version of the nonlinear low-Reynolds number 
k - e  model for turbulent separated and reattaching flows has 
been developed by Park and Sung (1995). In this section, the 
model is briefly summarized. Details regarding the model formu- 
lations are compiled in Park and Sung. For a stationary, incom- 
pressible flow field, the governing equations are in line with the 
equations of the turbulent kinetic energy k and its dissipation 
rate e. These equations are written in Cartesian tensor notations 
as 

ou, 
- -  = 0  ( 1 )  
Ox i 

+ - -  - uiu j (2) Uj Oxj Ox~ Oxj ~ Oxj 

ok o [(  v ,~0k l  
(3) 

Uj Oxj oxj v + f, 

t3 I~ 2 
+ C*~ek- k -G~f2-£- 

+ ( ClvvtS*,j2 + c2vkk,jS*S*,j) fwl (4) 

2 k ( aim Smj - l s ~ , s ~ , ~ q )  - UiU j = 2vtSij -- -~k~ij + CoillIt-~ 

k 
+ Cc~2v,- ~ (OJimSmj - OJjmSmi) (5) 

k 2 

v t = Cv.f~-- ~- (6) 

f~, = (1 - f~x) (1  + lOf~JR~ "25) (7) 

(C ~  + c ~ e k / e )  

fl~2 = Cil~l (Clt 2 Jr- ek//~) 2 (8) 

The unknown Reynolds stress - u i u  j is expanded up to the 
second-order term in a nonlinear k-¢  model (Rubinstein and 
Barton 1990; Speziale 1991). The nonequilibrium effect ( P j s )  is 
incorporated into C*,1 which has the form C*,1 =Qz(0.95 + 
0.05Pg~/e). S* is a modified strain rate parameter, S * =  
2 . 7 5 ¢ w / ( v  + vt). The model constant C1, C2, C~, and Q2 are 
set as C 1 = 1.0, C 2 = 0.006, C~ = 1.45 and C,2 = 1.9, respectively. 
C~,  C~ , and C. are the model constants (C a = 0.6, C~, = 0.4 
and C~ L__ 0.09). ~Fhe damping function f~ is e:~pressed as f~ = 
f~lf~2, which reflects the effect of wall-proximity (f~t) and the 
nonequilibrium effect away from the wall (f~2). 

Notation 

C 
cl 
C.,C~,,C~= 
f~, , f l , f2, fx  
H 
h 
k 
ks 
Pr 
Pr t 
Pk 

P0 

R 
Rt 

specific heat 
mean skin friction coefficient 
model constants 
model functions 
height of backward-facing step 
heat transfer coefficient [ = qw/(Tw - T=)] 
turbulent kinetic energy 
temperature variance 
Prandtl number ( =  a / v )  
turbulent Prandtl number (=  ¢xJv t) 
production of turbulent energy 
( = -- UiU j (gUI//Ox j )  
production of temperature variance 
( = _ ~ OT/Oxi) 
time-scale ratio [= ( k o / % ) / ( k / ~ ) ]  
turbulent Reynolds number ( = k2 /ve )  

Sij  
St 

T 
XR 

Greek 

0~(~ t 

5o 

80 
V, V t 
p 

to i j  

strain rate tensor [= 0.5(U/j + U~ i)] 
Stanton number ( =  h/Upc') ' 
mean temperature 
reattachment length 

thermal diffusivity and thermal eddy- 
diffusivity 
boundary-layer thickness 
thermal boundary-layer thickness 
dissipation rate of turbulent energy 
dissipation rate of temperature variance 
kinematic viscosiiy and eddy-viscosity 
density 
model constants of turbulent diffusion 
vorticity tensor [= 0.5(U/,j - Uj, i)] 
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Turbulence model for thermal field 

Governing equations 

The governing equations for turbulent heat transports are ex- 
pressed as (Abe et al. 1995), 

VJ oxj oxj [ ox, 

ok o a [[ a ,  ~ ok o ] 

Uj. OXj OXj ~ OXj J -- CpI--~oUJO OXj 

(9) 

(10) 

e 0 OV/ eO 2 e e  0 
+ C p z - - u i u  j -  -- - (11) k axj - - C D ' f O ' k  0 CD2fOz k 

As shown above, the eddy-diffusivity for heat a t in Equations 10 
and 11 is obtained by introducing the constant turbulent Prandtl 
number Pr t = ot t /v  t = 0.9. fh is the model function for turbulent 
diffusion. It is revealed that the roles of turbulent diffusion are 
substantial in the near-wall region (Abe et al. 1995). In the 
present study, the following model is thus proposed as fh = 1 + 
3 . 0 3 e x p -  Vr~t/15], which is modified from the ft function in 
velocity field (Park and Sung 1995). 1°0 represents the rate of 
production of the temperature fluctuations, P0 = - uiOOT/Oxi. 

Algebraic formulation for uiO 
The turbulent heat flux components uiO are evaluated by the 
following algebraic model. The basic physical model has been 
developed by other (Gibson and Launder 1976) for the restricted 
case where the ratio of turbulence-energy production and dissi- 
pation rate is equal throughout the flow; i.e., P k / e  = 1. The 
present work extends the treatment to more realistic flows; i.e., 
separated and reattaching flows, in which the ratio of P k / e  
varies from point to point. 

The algebraic formula for the turbulent heat fluxes is ex- 
pressed as (Rogers et al. 1989) 

2kk0(~0 + qbi0) 

uiO = ko(Pk - e) + k(Po - eo) 
(12) 

mensionless rescaled variables in Equation 14 are 

OT* _ 2go'r(1 _ C 2 o ) , /  k aT  
Oxj V ko OXj 

(15) 

S~ =g0T(1 - C2o)Sij (16) 

In the above, the variable go is a function of both the effect of 
nonequilibrium of velocity field ( P J e )  and that of thermal field 
(Po/eo): 

go = {Clo + PI,/~ - 1 + (Po/eo  - 1)/R} -1 (17) 

where R represents the ratio of the characteristic decay times 
for the turbulent temperature and velocity fields, R-= 
( k o / e o ) / ( k / e ) .  "r is the velocity time-scale T = k / e .  It is noted 
that, if the local equilibrium states are taken as equal ( P k / e  = 1 
and Po/eo = 1), the present model would be the same as the 
prior general algebraic models except for the wall treatment of 
the pressure-velocity strain term (Gibson and Launder 1978). 

In matrix form, Equation 14 can be written as follows: 

[ S]~I + 1 S~2 S~' 3 ] [b ,o  ] 

SY2 S~'2 + 1 S~'3 [ /b20 

S~l 5~2 S~3 + 1 j [b3o 

OT* 

l ] 
bl 1 + ! 3 b12 b13 cgx 

1 OT* 
= -- b21 b22 + 3- b23 ,gy 

b3! b32 b33 + ½ OT* 

_ 0 z  

(18) 

If we now limit our attention to two-dimensional (2-D) formula- 
tion, Equation 18 then yields the following formulas for the heat 
flux components 

--uO = CgfaA O' 

- / [u2(AoS22 + 1) - ~ A o S I 2 ]  ~ x  

77~ OT 
+ [-u'7(AoS22 + 1) + v AoSl2]Ty 

(19) 

w h e r e  Pi0 denotes the production rates of uiu j and Ui0 , respec- 
tively; i.e., Pi0 = - u i u j O T / O x j -  ujOOUi/Oxj, qbio represents the 
pressure- tempera ture -grad ien t  correlation,  qbi0 = pOO/Ox i 
(Gibson and Launder 1976). Following Gibson and Launder 
(1976; 1978), ~bi0 is modeled as 

_ OT } 
[u2AoS21 - hT(AoSl l  + 1 ) ] T x  

-- -{0 = Cg fx A°  - -  OT 
+[ ~7AoS21 +v2(AoSl l  + 1)]~-y 

(20) 

E 

~bi0 = CI0 ~Ui--~ -- C2oeio (13)  

H e r e ,  C10 and C20 a re  the model constants (C~0 = 3.0 and 
C20 = 0.33). The direct substitution of Equation 13 into Equation 
12 yields the following nondimensional expression for bio 

bi ° = _ ( bij + 8 i j  ] OT* 
--3"-] 7 x j  - bj°S~ (14) 

in which bio is defined as bio ~ uT0/2 k~/~0, and bij denotes the 
anisotropic tensor of t u r b u l e n c e  bij ~ u i u j / 2k  8ij /3.  The di- 

Here, the model constant Cg is set as Cg = 0.6, which is modeled 
from the reciprocal of the determinant of Equation 19. f~ repre- 
sents the well-damping function to incorporate the near-wall 
effect. The expression of A 0 in Equations 19 and 20 is given as 
A o =g0"r(1 - C20). 

Formulation of I x 

For accurate prediction of heat transfer in separated and reat- 
taching flows, it is highly important to reproduce the near-wall 
limiting behavior correctly. In the near-wall region, the asymp- 
totic behaviors maintain the following relations 70e~y 3, OT/Oy 
cxy °, A o ~ y  2 ~ o t y  3, uZ~y 4 and  Sl2~Y 0 as y - ~ 0 .  In a 
manner similar to the wall-damping formulation in flow fields, fh 
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is formulated as 

fx = (1 - T~,)(1 + lOTwl/Rlt "25) (21) 

(22) 

where Pr denotes the Prandtl number. R t and Ry stand for, 
respectively, the turbulent Reynolds number R t = k / ( v e )  and 
Ry = v ~ y / v .  The wall-reflection function Tw~ represents the 
effect of wail-proximity in the near-wall region. As mentioned 
earlier, fx is found to satisfy the wall limiting behavior; i.e., 
fx cty -3. 

Modeling of the so-equation 

The s0-equation can be modeled in a way similar to the prior 
models (Nagano and Kim 1988; Youssef et al. 1992; Abe et al. 
1995): 

O~ o 8 v + fh - C p l - - ~ j O - -  
g % % ~ % j ko % 

8 0  O U /  S 2 
- C p 2 - - u i u  j -  C 0 EEO 

k Oxj - ° ' f o x k  o - CD2fD2 k (23) 

In the above equation, the model constants Cp, and Cp2 for the 
production terms are determined by fitting the DNS data (Kim 
and Moin 1987; Kasagi et al. 1992); i.e., Cp, = 0.9 and Cp~ = 0.72, 
respectively. 

The limiting behavior of wall turbulence should be taken into 
account to balance the s o budget in the near-wall region. It is 
known that the near-wall asymptotic behavior of wall turbulence 
is derived as: k ~y2 and k 0 ~y2. To avoid the singularities in the 
%-equation near the wall, the following relations are required; 
i.e., fD 1 Cry 2 and fo  2 ~y2.  T h u s ,  fD, is modeled as re, = 1 -  
exp( -Ry /8 .1 ) .  From the decay law of homogeneous turbulence 
(Nagano and Kim 1988), the fD2 model function can be modeled 
a s  

C~2f2 - 1 
fo2 - CD2 f ~  (24) 

and fluid flow over a backward-facing flow. This flow configura- 
tion is frequently used for benchmarking the performance of 
turbulence models for separated and reattaching flows. The 
model predictions are compared with the experimental data of 
Vogel and Eaton (1985) for a backward-facing step flow. 

Model performance in a channel f low 

The numerical scheme used is a well-established finite-volume 
method. The boundary conditions are: U = k = k  o =0,  s = 
vO2k/Oy 2, s o = a32ko/Oy 2, T,, =constant  or qw =constant  at 
the wall; 3U/3y  = ak/Oy = 3e /3y  = 8T/ay  = Oko/Oy = 0 at the 
central axis. To obtain the grid-independent solutions, we need 
101 nonuniform grid points in the direction normal to the wall. 
The grid convergence was checked, and the outcome of these 
tests was found to be satisfactory. 

The predicted profiles of temperature T ÷ by the present 
model are exhibited in Figure 1 under two different wall thermal 
conditions. The selected Reynolds numbers are R G = 150 and 
180, for which the DNS data exist. The model predictions by Abe 
et al. (1995) (hereafter referred to as AKN model) are also 
displayed for comparisons. The AKN model is recently developed 
for predicting fluid flow and heat transfer in separated and 
reattaching flows. As seen in Figure 1, the present model shows 
good predictions with DNS data for both the uniform wall 
temperature and uniform wall heat flux conditions (Kim and 
Moin 1987; Kasagi et al. 1992), while the AKN model slightly 
underpredicts in the outer region (y+>  50). 

The predicted profiles of turbulent heat flux vO ÷ in the 
near-wall region are shown in Figure 2. The DNS data of Kasagi 
et al. (1992) with the uniform wall heat flux condition (qw = 
constant) is included for comparision. Both the present model 
and the AKN model provide good agreements with DNS data. 
The normalized profiles of temperature variance k~" are dis- 
played in Figure 3. The present model predictions show excellent 
agreements with DNS data, however, the predicted results by the 
AKN model are slightly underpredicted. The near-wall behavior 
of k~- are also plotted in Figure 4 with a logarithmic scale. The 
agreement with DNS data in the near-wall region is good by the 
present model. 

Figure 5 compares the budget of k0-equation with the DNS 
data. As is evident, the present model follows the DNS data well. 
Although a little discrepancy is exhibited near the region y+ = 10, 
the present model reproduces the near-wall behavior better than 
the AKN model. The near-wall behavior of s~- is shown in 

with the relations COlfD 1 = 1 and CO2fD 2 = C~zf2 - 1. The model 
constants can be set as Col = 1 and Co2 = 0.9 (Nagano and Kim 
1988). In Equation 24, the leading term; i.e., (C~2-1) /CD2 
represents the effect of free-turbulence, and low denotes the 
wall-proximity near the wall. few is obtained by fitting the DNS 
data (Kim and Moin 1987; Kasagi et al. 1992); i.e., fDw = 1 -  
e x p ( - R J 8 . 1 ) .  The fD2 function satisfies the limiting behavior 
correctly, fo2 a Y 2. 

Results and discussion 

The main aim of the present model is to predict turbulent 
thermal quantities in separated and reattaching flows. However, 
it is important to ascertain the generality and accuracy of the 
present model to an attached boundary layer. Because turbu- 
lence quantities arc available from DNS data (Kim and Moin 
1987; Kasagi et al. 1992), first we have applied the model to a 
fully developed channel flow with two typical boundary condi- 
tions; i.e., with a uniform wall temperature and a uniform heat 
flux. Next, the proposed model is tested for the combined heat 
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Figure 6. As compared with the prior profile of e in velocity 
fields by Park and Sung (1995), the predicted e~ profile is seen 
to be less accurate. However, the present model follows the wall 
behavior fairly well. 

Model performance in separated and reattaching flows 

As mentioned earlier, a benchmarking experiment is selected to 
test the present model for separated and reattaching flows; a 
backward-facing step flow (Vogel and Eaton 1985). Before pro- 
ceeding further, the numerical procedure and boundary condi- 
tions for these elliptic computations are briefly summarized in 
the following. The finite-difference equations are discretized 
using the hybrid linear parabolic approximation (HLPA) scheme 
with second-order accuracy. A nonstaggered variable arrange- 
ment is adopted with the momentum interpolation technique to 
avoid the pressure-velocity decoupling. The coupling between 
pressure and velocity is achieved by the SIMPLEC prediction- 
corrector algorithm, which is an improved version of the SIM- 
PLE algorithm. The set of discretized linear algebraic equations 
is solved by a strongly implicit procedure(SIP). The boundary 
conditions are: U = V = k = k 0 = 0, e = vOZk/On 2, e. o = 
aOZko/On 2, OP/On = 0  and qw =cons t an t  at the bot tom wall 
surface. The inlet conditions are given from the experimental 
conditions together with OP/On = 0. The Neuman conditions are 
applied at the outlet. The computations were done on a CRAY- 
YMP supercomputer.  Convergence was declared when the maxi- 
mum normalized sum of absolute residual sources over all the 

k; 

Figure 3 

Rer = 150 

q~ " ~  Present model 
'¢~ . . . . .  AKN model 

I I I 

40 80 120 160 y+ 
Comparison of the predicted k 0 with DNS data 

computational nodes was less than 10 -4. Several trial calcula- 
tions were repeated to monitor  the sensitivity of the results to 
grid resolution. The nonorthogonal  finer-resolution grid systems 
were (201 × 121), where the grid points were crowded near the 
wall boundaries and clustered in the recirculating region. 

As a validation of flow-field computation, the wall shear 
stress coefficient C/, is exhibited in Figure 7, which is closely 
related to the prediction of turbulent heat transfer near the wall. 
The predicted Cf is plotted against a nondimensional streamwise 
coordinate X * =  ( X - X R ) / X  R, together with the experimental 
data of Vogel and Eaton (1985). Here, X R represents the reat- 
tachment  length. The step-height Reynolds number  is Re M = 
28,000. It is seen that the present model prediction in the 
recirculation region is in better  agreement with the experiment 
than the AKN model prediction. 

The Stanton number  St profiles are displayed in Figure 8 by 
using the same coordinate X*. The Stanton number  profiles by 
employing the turbulent  Prandtl number  Pr t = 0.9, without solv- 
ing the k0, e 0 equations, are also plotted in Figure 8. Comparison 
between the predicted results and the experimental data indi- 
cates that the present model prediction is in overall bet ter  
agreement with the experiment. The predicted results of Pr t = 0.9 
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is overprcdicted near the rccirculation region, while the AKN 
model slightly underpredicts. However, all of the Stanton number 
profiles have the same general features; i.e., the peak heat 
transfer rates occurs near the reattachment region (X* = 0) and 
there is a low heat transfer in the recirculation region. The heat 
transfer coefficient recovers fairly rapidly to fiat-plate behavior 
downstream of reattachment (Vogel and Eaton 1985). 

Comparisons are extended to the nonequilibrium effects on 
the Stanton number profiles in Figure 9. The results of the local 
equilibrium state (Pk = e and Po = eo) are also displayed with 
the dashed line. As expected, the consideration of the nonequi- 
librium effects on St is important in the recirculation region. In 
particular, the discrepancy near the reattachment region (X* = 0) 
is significant. It is seen that the present computed results are in 
excellent agreement with the experiment. 

The profiles of turbulent heat flux (-v--0 +) near the recircula- 
tion region ( - 0 . 7  <X*  < 0.5) are shown in Figure 10. The step 
height Reynolds number is ReH = 13,000 and 8/H = 1.1, respec- 
tively. As can be seen, rather poor agreement is obtained be- 
tween the predicted results and the experiment (Vogel and 
Eaton 1985). Moreover, the deviation is amplified near the wall 
region. This inadequate prediction may be attributable to the 
fact of incompleteness of the present model. On the other hand, 
as stressed by Vogel and Eaton, the fall off of the turbulent 
transport approaching the wall may be exaggerated due to the 
constraint of their measurement technique. However, the overall 
trends between them are generally consistent. It is seen that the 
change near the step is representative of the shift in the turbu- 
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lent  t ranspor t  be tween  a free shear  layer and a wal l -boundary 
flow. A t  the posi t ion downs t ream of  one  half  r ea t t achment  
( X * =  0.5), the  profile is very similar to that  found on a flat 
plate; i.e., b--0 ÷ highest  near  the  wall, d ropping  to zero  in the free 
stream. 

Based on the  weal th  of  numerical  results,  it is useful to 
visualize the contour  plot  o f  R = ( k o / e o ) / ( k / e )  in Figure 11. 
The  t ime-scale ratio is def ined  by the  ratio of  the  t ime-scale of  
energy containing eddies  in the  thermal  field ( k o / e  o) to that  in a 
velocity field ( k / e ) .  Because turbulent  mixing in the  separa ted  
f ree-shear  layer is so strong, the  velocity t ime-scale ( k / e )  be-  
comes  then  very small. In contrast ,  the thermal  t ime-scale ( k o / e  o) 
is relatively large f rom the  computa t ion .  This shows that  R is 
very large along the  separa ted  f ree-shear  layer. 

Conclusion 

A low-Reynolds  num ber  four -equat ion  heat  t ransfer  mode l  has 
been  deve loped  for predict ing hea t  t ransfer  in turbulent  sepa-  
ra ted  and reat taching flows. The  limiting near-wall  behavior  
close to the  wall and the  nonequi l ibr ium effect  in the  recirculat-  
ing region away f rom the  wall were  fully considered.  

The  wall-limiting behaviour  of  the e0-equat ion was also incor- 
pora ted .  In the first, the  p resen t  mode l  was tes ted  against  the  
DNS data of  a fully deve loped  channel  flow with a uni form wall 
t empera tu re  and a uni form heat  flux. The  near-wall  behaviors  of  
k 0 and e 0 were  r ep roduced  fairly well. Next, the validation was 
ex tended  to the flow over  a backward-facing step. In testing the  
backward-facing s tep flow, the  pred ic ted  results o f  wall shear  
stress coefficient  Cf  and Stanton number  St were  shown to be in 
good  ag reemen t  with the  relevant  exper iment .  It was revealed 
that  the p resen t  mode l  predict ion is in overall be t te r  agreement  
with the exper iment  than  the case of  Pr  t = 0.9. Fur the rmore ,  the 
nonequi l ibr ium effects on St were  shown to be significant. Rela-  
tively poor  ag reemen t  was ob ta ined  for the  predic t ions  of  turbu- 
lent hea t  flux. However ,  the  overall  t rends  were  generally satis- 
factory. F rom the con tour  plot  of  R, valuable informat ions  could 
be extracted.  

L. i 
0.00 0.29 0.57 0 . ~  1.14 1.43 1.71 2.00 

ReH = 28,000 

Figure 11 Contour  plot  of R in a backward - fac ing  step f l ow  
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